

Sample Preparation for Biological Samples

MonoSpin

Sample Preparation for Biological Samples

Monospin is a solid-phase extraction spin column designed for biological samples such as blood, serum, and urine. It utilizes silica monoliths as its base material, featuring uniform continuous pores.

Through centrifugation, it effectively and rapidly extracts, isolates, purifies, and concentrates samples.

Urine

Whole Blood

Plasma, Serum

Operation method

Short time centrifugation is used to pass the liquid in solid-phase extraction.

The whole sample treatment process can be done within 10 min.

Centrifuge Operation

Format

MonoSpin series cartridges of different types are available: Type S: Excellent for pretreating the sample for 50–800 μ L Type L: Appropriate for sample 0.5–8 mL. For the details of the varied functional group, please see the next page.

Spin Type

Large Type

96 Well plate type

- Sample volume : up to 800 μL
- Elution volume : 50 to 800 μL
- Centrifugation speed : 1,000 to 5,000 × g (can be used in vacuum aspiration)

NOTE) MonoSpin C18 FF, MonoSpin ProA and MonoSpin ProG have different specifications.

Please see page 14 and 15 for details.

Large Spin Column

• Maximum 16 mg antibody can be recovered by centrifuge.

Silica monolith ~ New separation media that are neither particulate nor membrane ~

Silica monoliths are integral silica gels with uniform continuous pores and produced from ethyl silicate. Unlike the particle media, the silica monolith is shaped like a disk. Silica monoliths have high liquid permeability and large surface area as they have through-pores and mesopores on their framework surface. Thus, this state-of-the-art medium is becoming popular worldwide for its properties: high recovery, high performance of adsorption, and desorption.

Silica monolith structure

Advantages of Monolithic SPE materials over particle packed SPE materials

- Disk-shaped silica monoliths do not use frits to hold particle media in traditional solid-phase extraction cartridges.
- Monolithic material has a massive surface area, making it possible to reduce the sample volume. Silica monoliths makes it possible to retain samples in the cartridge and completely elute small samples during processing.
- Despite its high liquid permeability, it is also suitable for fast elution without losing its high recovery as it achieves rapid sample diffusion and separation.

Particle-filled Form

- Need for filters
- ightarrow liquid may be
- remained in the filter

Bed volume for separation media : large Sample diffusion in the column : slow Separation speed : slow

MonoSpin series lineup

 Reversed Phase Columns MonoSpin C18/C18 FF

—(CH2)17 CH3

-SO3

-SO3

NH₂

СООН

MonoSpin SCX

-(CH₂)₃-

MonoSpin C18-CX

—(CH2)17 CH3

MonoSpin Amide

MonoSpin ME

-(CH2)3-

 Ion Exchange Columns MonoSpin SAX

> Cl —(CH2)3—N⁺–(CH3)3

MonoSpin C18-AX

 HILIC Columns MonoSpin NH2

Affinity Columns MonoSpin PBA

MonoSpin TiO

• Antibody Purification Columns

MonoSpin ProA

MonoSpin ProL

MonoSpin CBA

Characteristics of MonoSpin Series

Purification and Enrichment of Trace Analytes

Due to its high permeability, the MonoSpin series enables quicker and more efficient purification and enrichment with centrifugation.

It is also recommended to elution small volume samples, and trace analytes can be collected without dilution.

		S Type / S	96 well	L Type		Surface Area	Bed Canacity
Product name	Functional Group	Through pore (µm)	Mesopore (nm)	Through pore (μm)	Mesopore (nm)	(m2/g)	(For type S)
MonoSpin C18	Octadecyl group	5	10	10	10	350	100 µg Amitriptyline
MonoSpin C18 FF	Octadecyl group	20	15	10	10	300	50 µg Amitriptyline
MonoSpin Ph	Phenyl group	5	10	-	-	350	100 µg Amitriptyline
MonoSpin C18-AX	Octadecyl group,	5	10	-	-	350	100 µg Ibuprofen
	Quaternary ammonium						
MonoSpin C18-CX	Octadecyl group,	5	10	-	-	350	100 µg Amitriptyline
	Benzenesulfonic acid group						
MonoSpin SAX	Trimethylaminopropyl group	5	10	10	10	350	100 µg Ibuprofen
MonoSpin SCX	Propylbenzenesulfonic acid group	5	10	10	10	350	100 µg Amitriptyline
MonoSpin NH2	Aminopropyl-group	5	10	10	10	350	100 µg Maltopentaose
MonoSpin CBA	Carboxyl group	5	10	10	10	350	100 µg Amitriptyline
MonoSpin Amide	Amide group	5	10	-	-	350	100 µg Angiotensin Ⅱ
MonoSpin PBA	Phenylboronic acids	5	10	-	-	350	100 µg Dopamine
MonoSpin TiO	Titanium dioxide	20	15	-	-	200	40 μg Adenosine monophosphate
MonoSpin Trypsin HP	Trypsin	5	10	-	-	100	
MonoSpin ME	Iminodiacetic acid group	5	10	10	10	350	25 μg Cu ions
MonoSpin Phospholipid	Titanium dioxide Zicronium dioxide	5	10	10	10	350	10 μ L Human serum
MonoSpin ProA	Protein A	2	60	2	60	-	400 μg Human IgG
MonoSpin ProG	Protein G	2	60	2	60	-	300 µg Human IgG
MonoSpin ProL	Protein L	2	60	2	60	-	200 µg Human IgG

Physical properties of MonoSpin series

Specifications for Shape and Type

Туре	MonoSpin S type *1	MonoSpin FF ^{*2}	MonoSpin L type	MonoSpin 96 well type
Disk size	4.2×1.5 mm	4.2×1.5 mm	9×3 mm	4.2×1.5 mm
Sample Volume	Up to 800 μL	Up to 800 µL	Up to 8 mL	Up to 800 µL
Elution Volume	50 to 800 μL	50 to 800 μL	0.5 to 8 mL	100 to 800 μL
Centrifugal force	2,000 to 10,000 × g	1,000 × g	$1,000 \times g$	1,000 to 5,000 × g

*1:MoSpin ProA and MonoSpin ProG are different in specifications. Please refer to page 15 for the details.

*2:FF type is available for MonoSpin C18 FF only.

The Viscosity of the Sample

The MonoSpin series is optimized as a spin column for pretreatment of biological samples. If you are working on very viscous samples such as blood, MonoSpin C18 FF is the best choice. Please refer to the following chart for choosing the suitable MonoSpin.

Application

Purification of Amphetamines in urine using MonoSpin C18

- Sample : 1. Norephedrine
 - 2. Ephedrine
 - 3. Methylephedrine
 - 4. Amphetamine
 - 5. Methamphetamine
 - 6. 3,4-methylenedioxyamphetamine
 - 7. 3,4-methylenedioxymethamphetamine

X Data provided by Dr. Namera, Hiroshima University

Time(min)

Recovery of drugs in biological samples using MonoSpin C18

Day-to-day reproducibility of the drug in serum using MonoSpin C18 (3 days, n = 10).

Sample	Concentration (ng/mL)	Recovery rate (%)	RSD (%)		Sample	Concentration (ng/mL)	Recovery rate (%)	RSD (%)
5	5	91.2	4.8			5	85.7	8.1
	10	86.1	3.3		Manratilina	10	84.7	3.2
Desipramine	50	85.2	5.9		Maprotiine	50	88.6	5.4
	250	88.4	6.5			250	87.5	7.7
	5	96.3	9.5			5	106.3	9.9
Imipramine	10	95.8	1.5		Dulovatina	10	104.8	6.7
	50	94.5	0.9	Duloxetine		50	99.8	8.7
	250	95.9	0.9			250	99.8	6.0
	5	96.8	11.6			5	83.7	7.0
Flux coversises	10	87.1	5.0		Amitrintulino	10	81.8	2.8
Fluvoxamine	50	86.8	8.1		Amitriptyline	50	83.8	3.0
	250	87.5	9.7			250	88.4	2.7
	5	83.7	3.9			5	97.9	9.0
Paroxetine	10	84.1	7.8		Culpirido	10	95.5	8.5
	50	83.9	8.2	Sulpiride		50	90.8	2.6
	250	86.7	7.5			250	92.6	3.0

Application

Desalination of protein digestion using MonoSpin C18

Highly concentrated denaturant and salt in digestive were successfully removed using MonoSpin C18.

Rapid Digestion of BSAs by MonoSpin Trypsin HP

Ex. Reductive alkylation protocol

1 mg bovine serum-albumin

- ---- 500 mM Tris-HCL(pH 8. 0)-- 8 M urea (Solution 1): 175 μL
- ---- 40 mg/mL Dithiothreitol in Solution 1: 25 μ L
- ---- Incubation at 37 °C for 90 min
- ---- 40 mg/mL lodoacetamide in Solution 1: 50 μL
- ---- Incubation at 37 °C for 30 min (under shaded conditions)

Reductive alkylation of proteins: 250 µL

Dilute with 50 mM Ammonium bicarbonate to adjust the urea to 2 M: 750 μL

MonoSpin Trypsin HP

NOTE) The method of reductive alkylation should be optimized depending on the type of protein.

Conditions

Column	: Inertsil ODS-3
	(3 μm, 150× 2.1 mm l.D.)
Eluent	: A)H ₂ O (0.1 %HCOOH)
	B)CH ₃ CN (0.1 %HCOOH)
	A/B = 90/10 - 20 min - 50/50
Flow Rate	: 0.2 mL/min
Col. Temp.	: 40 °C
Detection	: UV 210 nm
Sample	: Digested BSA 2 µL

NOTE) For digestion, be sure to use protein after reductive alkylation.

Trypsin-immobilized spin column can complete the process just in 10 min.

Application

Fractionation of Protein digests using MonoSpin SCX

The use of spin columns and elution salt concentration stepwise makes it feasible to fractionate peptides without using 2D-LC or other complex systems.

Sample Volume: 500 μ L Used Peptide sample dissolved in 0.1% Formic acid after desalting with MonoSpin C18. Centrifuge : 10,000 $\times g$

Apply the eluent, centrifuge, and then attach a new tube to apply the next eluent.

(1) 25 mM HCOONH ₄ 200 μ L	(4) 500 mM HCOONH $_4$ 200 μ L
(2) 50 mM HCOONH _ 200 μL	$\textcircled{5}$ 1 M HCOONH ₄ 200 μ L
(3) 100 mM HCOONH_4 200 μL	

Injection) Each solution contains 10% acetonitrile.

Conditions

Column	: Inertsil ODS-3 (3 μm, 2.1 ×150 mm)
	: A)H ₂ O (0.1 % HCOOH)
	B)CH₃CN (0.1 % HCOOH)
	A/B = 90/10 - 20 min - 50/50
Detection	: UV 210 nm
Flow Rate	: 0.2 mL/min
Col. Temp.	:40 °C
Injection Vol.	. : 2 μL

Purification of pyridylaminated glycans using MonoSpin NH2

A/B = 90/10-10 min-90/10-40 min-60/40

Application

Purification of Paraquat and Diquat using MonoSpin CBA

Column : Inertsil ODS-3 (5 μm, 150 mm× 4.6 mm I.D.) Eluent : 0.2 M phosphoric acid, 0.1 M diethyl amine, 7.5 mM IPCC08 (IPCC-0.8, Sodium 1-Octanesulfonate) /Acetonitrile=89/11 Flow Rate : 1 mL/min Col.Temp. : 40 °C

- Detection : PDA 290 nm
- Injection Vol. : 50 μL

Recovery of hormones in serum using MonoSpin C18

Column	: InertSustain C18 (2 μm, 50 ×2.1 mm I.D.)
Eluent	: A)0.1 % TFA in Water
	B) 0.1 % TFA in Acetonitrile
	A/B = 85/15 – 5 min – 50/50-2 min-50/50
Flow Rate	: 200 μL/min
Col.Temp.	: 40 °C
Detection	: UV 210 nm
Injection Vol	. : 10 μL

Application

Purification of Catecholamines using MonoSpin PBA

By using MonoSpin PBA, we can selectively recover and purify compounds with cis-type diols such as catecholamines. See our website Technical Note LT093 for more information.

Purification of Organophosphorus pesticides in human serum using MonoSpin TiO

B)20 mM HCOONH₄ (pH 3.0) A/B = 15/85, v/v Flow Rate : 0.2 mL/min

Detection : SIM

2. Glyphosate

- 3. MPPA
 - 4. Glufosinate
 - 5. AMPA

Application

With Insulin or BSAs

Sample Preparation

Centrifuge : $2,000 \times g$

①Insulin (*n*=3)

Concentration (mg/mL)	0.1	0.5	1.0	2.0	2.5	4.0	5.0
Recovery rate (%)	105.9	105.8	111.5	113.2	101.2	90.7	75.4
Sample (mg)	0.030	0.15	0.3	0.60	0.75	1.2	1.5
Recovery (mg)	0.032	0.16	0.33	0.68	0.76	1.1	1.1

Preferred reference quantities

②BSA (*n*=3)

Concentration (mg/mL)	0.05	0.075	0.10	0.25	0.50
Recovery rate (%)	76.7	84.8	86.1	61.1	36.2
Sample (mg)	0.015	0.023	0.030	0.075	0.15
Recovery (mg)	0.012	0.019	0.026	0.046	0.054

Preferred reference quantities

The amount of recovery becomes constant reaching at a certain point. The maximum loading amount shown below is calculated by the amount of sample recovered at the point.

Insuline= 1.2 mg (recovery rate=90.7 %)

BSA=0.03 mg (recovery rate=86.1 %)

Analysis of blood samples using MonoSpin C18FF

Conditions

Column : InertSustain Phenyl (3 μ m, 150 ×2.1 mm I.D.) Eluent : CH₃CN-HCOONH₄ (10 mM, 0.1 % HCOOH) = 25:75 (v/v) Flow Rate : 0.2 mL/min Col.Temp. : 40 °C Detection : MS (ESI)

Analysis of cyclosporin A in serum using MonoSpin C18 and Ph.

Spike recovery test results

		Rec (%)	RSD (%)
0 [ng/m]	C18	94.8	2.4
0.5 lig/iiiL	Ph	103.8	10.0
	C18	98.6	12.1
	Ph	115.6	14.8

(0.5,5 ng/mL in sample, n=3 x 1 days)

Chromatogram example of standard solution

<u>Conditions</u>

Column	: InertSustain Phenyl (GL Sciences Inc.)						
	(3 μm, 50 x 2.1 mm I.D.)						
Column Cat.No	o. : 5020-16433						
Eluent	: A) CH ₂ CN						
	B) 0.1% HCOO	OH in H₂O					
	Time (min)	A (vol%)	B (vol%)				
	0.0	10	90				
	7.0	90	10				
	10.0	90	10				
	10.1	10	90				
	13.0	10	90				
Flow Rate	: 0.4 mL/minCol. Temp.						
Col. Temp.	: 50 °C						
Detection	: MS/MS(SCIEX	()					
	(QTRAP 6500+: ESI, Positive, SRM)						
Injection Vol.	: 5 μL						
Sample	: Cyclosporin A (20 ng/mL)						
	Q1/Q3 = 1220/1203						
	Q1/Q3 = 1220/1185						

Analysis of Peptides and Proteins Using MonoSpin C18

1.RibonucleaseA (Mw 13,700) 2.Insulin (MW 5,800) 3.Lysozyme (MW 14,307) 4.BSA (MW 66,000)

5.Myoglobin (MW 17,500)

Conditions

Column	: InertSustainBio C18 (1.9 μm , 100× 2.1 mm I.D.)
Eluent	: A) 0.1 % TFA in H_2O B) 0.1 % TFA in CH_3CN A/B=72/28 - 20min - 45/55 - 0.1 min - 72/28 – 5 min
Flow rate	: 0.2 mL/min
Col.Temp	: 40 °C
Detection	: UV 220 nm
Injection Vol	: 2 μL

Analysis of serum sample using MonoSpin Phospholipid

Analysis of Ribavirin in Human Serum using MonoSpin PBA

*Preparation method of solution:

2 g of anhydrous sodium sulfate were dissolved in 300 mL of water and then 8 mL of phosphoric acid were added to 2 L.

◆ Spike and Recovery Test ① (Intra-day Reproducibility)

Analysis of 2-AB Derivatized Glycans Using MonoSpin

Solution A

Water : Acetonitril : Formic acid = 50:50:0.1 (v/v/v)

Solution B

Water : Acetonitril : Formic acid = 10:90:0.2 (v/v/v)

Sample Solution

In this study, $10\mu L$ of water and $180\mu L$ of acetonitrile were mixed with $10\mu L$ of a solution containing 2-AB sugar chains dissolved in DMSO:acetic acid=70:30 (v/v).

Sample Solution Measurement Without Purification

Sample Solution Measurement After Purification using MonoSpin Amide

Conditions

System	
Column	
Eluent	

: GL7700 HPLC System : InertSustain Amide (5 μm, 250 X4.6 mm I.D.) : A) CH₃CN

B) 50nM HCOONH₄ in H₂O (pH 4.4, HCOOH)

Time (min)	A (vol%)	B (vol%)
0	80	20
20	65	35
80	50	50
90	50	50

Flow Rate	: 1.0 mL/min
Col. Temp.	: 50 °C
Eluent	: FL Ex 330 nm Em 420 nm
	(FL7753 FL Detector)
Injection Volume	: 25 μL
Sample	: 2-AB Labeled Glucose
	Homopolymer Ladder

MonoSpin ProA, MonoSpin ProG

Ultra-high-speed processing ensures stable recovery

Antibodies can be easily purified by centrifugation in a short time in a tabletop centrifuge With silica monoliths. When collecting antibodies, the neutralizing solution can be added to the collection tube in advance to immediately neutralize the antibodies collected by the acid immediately. This action greatly reduces the risk of antibody degeneration.

As shown below, the antibody concentrations were determined quantitatively from the medium of CHOcells. The purified antibodies show very few impurities by the results of electrophoresis.

Results of recovery electrophorensis

Enrichment of Antibody Solution Using MonoSpin ProA

Human IgG solution (500 μ L of 0.025 mg/mL) was applied to a MonoSpin ProG spin column 10 times (In = I1–I10). Then, the elution of IgG concentration was determined twice with 100 μ L elution buffer (En = E1 and E2). The first IgG elution (E1) was 50 fold concentration of the standard solution and indicates a 90% recovery of IgG without loss.

Elution Volume and Recovery Rate Comparing with Other Brands Products

MonoSpin ProA needs only 100 μ L elution buffer to obtain a recovery rate of at least 90% lgG. However, other brands' products require 400 μ L or more elution buffer with a recovery rate of 70% lgG.

Purification of Antibody using MonoSpin ProA

Removal of preservatives in antibody solutions

MonoSpin ProA/ProG enables you to remove proteins such as BSA and Gelatin in antibody solutions without dilution.

Recovery of antibodies from CHO cell culture medium (96-well plate)

Purification of multiple antibodies using MonoSpin L and ProA

Procedure

- 1. Apply 5 mL of equilibration buffer.
- 2. Apply sample (Max. 8 mL) after filtration through 0.2 µL filtration.
- 3. Apply 5 mL of washing buffer.
- 4. Apply 5 mL of elution buffer.

Centrifugal force at each step : 1,500 x g, 2 min * MonoSpin ProA/G buffer kit was used.

Selectivity of MonoSpin ProL

Purification of Fab using MonoSpin ProL

1.0

Time (min)

0.0

2.0

Publicly Available Reference

MonoSpin	Target	Articles
C18-CX	acetamiprid (ATP) and imidacloprid (ICP)	New Innovations in Chemistry and Biochemistry 2021, 6, 81.
C18-CX	acetamiprid (ATP) and imidacloprid (ICP)	Curr. Adv. Chem. Biochem., 2021, 10, 14.
C18 MF	Metal ion	Anal Sci 2021 37 1301
C18	nlant toxins	L Pharm Biomed Anal 2021 102 113676
C10	Digested pontides	Anim Diosci 2021 24 1522
C18	urinary offices	L Linid Pos 2021, 54, 1552.
	Victoria and drug	J. LIPIU RES., 2021, 02, 100120.
	Alaba availatia	Ann. Rep. Osaka. Inst. Pub. Health, 2021, 5, 48.
Trypsin HP	Aipria-synuclein	J. Chromatogr. B, 2021, 1181, 12288.
Phospholipid	Simultaneous steroids	J. vet. Med. Sci., 2021, 83, 1634.
C18	Iryspin	Front. Immunol., 2021, April, 01.
C18	Oxidized phospholipids	Cardiovasc. Res., 2021, 117, 96.
C18	Glycated Candidate Biomarkers	Anai. Chem., 2021, 93, 4398.
C18, C18-CX	Digested peptides	Cancers, 2021, 13, 3972.
C18	Digested peptides	FEBS Lett., 2021, 595, 2608.
L C18	Digested peptides	J. Immunother Cancer, 2021, e002549
C18	Digested peptides	Life, 2021, 11, 990.
C18	Digested peptides	https://doi.org/10.1101/2020.03.31.019216
C18-AX	lipid metabolites	STAR Protocols 2021, 2, 100492.
C18	luciferin	Biochem. Biophys. Res. Comm. 2021, 577, 139.
C18	actomyosin complex during	Food Chemistry, 2021, 352, 129398.
C18	peptides	Inter. J. of Biolog. Macromol., 2021, 187, 976.
C18	Digested peptides	Cell Chemical Biology, 2021, 28, 475.
Trypsin, C18	Digested peptides	Molecules, 2021, 26, 315.
C18	Digested peptides	Human gene therapy, 2021, 32, 21.
C18	Digested peptides	Nano Research 2021, 14, 620
C18	Digested peptides	J. Proteome Res. 2021 Jun 3 : acs.jproteome.1c00054.
C18	Digested peptides	Hindawi Neural Plasticity 2021,ID 9983438, 15.
C18	colchicine	Toxicol. Anal. Clin., 2021, 33, 276.
C18	Digested peptides	Biochem. Biophys. Res. Comm., 2021, 548, 155.
AG	The anti-glycation	UPP Wickramasinghe, 2021
C18	peptides	J. Func. Foods, 2021, 87, 104827.
PBA	Catecholamine	Nutrients, 2021, 13, 4214.
C18	attributes, metabolites	Food Chemistry, 2021, 343, 128470.
C18	peptides	J. Chromatography A, 2021, 1652, 462351.
C18	cucurbitacin B and E	J. Insect Phys. 2021, 134, 104294.
C18	Digested peptides	Front. Plant Sci., 2021, 12.
C18	Digested peptides	PeerJ . 2021 Feb 9;9:e10879
C18-AX	Lipid	The FASEB Journal. 2021;35:e21354.
C18	sugars	"Anim Sci J. 2021:92:e13530.
C18	Digested peptides	Exp. Eve Res., 2021, 212, 108794.
C18	peptides	Stem Cell Research & Therapy, 2021, 12, 216.
C18	peptides	J. Venom Anim. Toxins incl Trop Dis, 2021, 27:e20210023.
C18	peptides	Microorganisms, 2021, 9, 593.
C18	Digested peptides	Virology, 2021, 559, 120.
C18	To remove the hydrophobic component	Biosci Biotech Biochem 2021 85 1194
C18	To remove the linids	L Immunol 2021 206 1729
PBA	Catecholamine	IID Innovations, 2021, 1, 100016.
Trynsin C18	Proteins	Commun Biology 2021 4 974
C18	Digested nentides	DOI: https://doi.org/10.21203/rs.3.rs_612007/v1
C18	ralfuranone A	Mol Plant Pathol 2021 22 1538
C18	Digested pentides	Biosci Biotec Biochem 2021 85 2209
C18	tomato ovtract motabolito	Eacd Safety 2021, 0, 22
C18	nentides	上面記今年会利受时团研究報告集 35 2021
C18	Digested pentides	工际記心工即科子別凹训九報古来 33 2021. Mol Dharmacoutics 2022 10 2 559
	linide	Scientific Penerte, 2021, 11, 10/26
C18	nentides	Neurophiology of $\Delta ging 2021, 106, 2/1$
C18	peptides	Neurobiology of Aging, 2021, 100, 241.
C18	quercetin and carvacrol	L Food Drug Anal 2021, 7, 510.
Amide	nontidos	Scientife Reports 2021, 23, 033.
C18	nentides	Scientife Reports 2021, 11, 10/23.
C18	nentides	Nat Commun 2021 12 1029
C18	peptides Disected particles	Ndl. Commun., 2021, 12, 1028.
C18	Digested peptides	Eur. J. Med. Chem., 2021, 214, 113217.
C18	Digested peptides	Science, 2021, 24, 102906.
C10	Digested peptides	Sci. Auv., 2021, 7999, 20. Molecular Cell 2021, 81, 1781
C18	Digested peptides	Molecular Cell, 2021, 81, 1781.
C18	Digested peptides	Cell Chaminal Dialogy 2021, 33, 565.
C18	proteins	Cell Chemical Biology, 2021, 28, 67.
C18	peptides Disasted a settidas	Current Biology, 2021, 31, 3586.
C18	Digested peptides	Nat. Commun., 2021, 12, 5796.
C18	Digestea peptiaes	Science, 2021, 372, 1055.
C18	Digested peptides	SCI. Adv. 2021; / : eabib582.
C18	peptides	Cell Discovery, 2021, 7, 41.
C18	prostaglandin D2	J. Med. Chem. 2021, 64, 21, 15868.
C18	peptides	Nat. Metab., 2021, 3, 1242.
C18	peptides	J. Biol. Chem., 2021, 296, 100477.
C18	peptides	PLOS ONE https://doi.org/10.1371/journal.pone.0251684
C18 MPEX	peptides	https://doi.org/10.26508/lsa.202000945
C18	peptides	Science 2021 372, 480
C18	peptides	https://doi.org/10.26508/lsa.202101022
C18-AX	Oxylipins	DOI: https://doi.org/10.21203/rs.3.rs-428622/v1
SCX	To remove excess NBD-PZ	DOI: https://doi.org/10.21203/rs.3.rs-48442/v1

MonoSpin	Target	Articles
Phospholipid	serum phospholipid removal	https://doi.org/10.3389/fvets.2022.1014792
PBA	serum	https://doi.org/10.3390/separations9050113
C18	peptide/ serum	Transl Pediatr. 2022. 11. 891.
C18	vitro protein	Food Chem 2022 387 132917
C18	nensin/trynsin	Food Chem 2022 380 132183
C10	pepsilit i ypsili	Hindawi Oxidative Medicine and Celluar Longenvity Volume2022 Article ID
C18	peptides	1622829 httpsdoi.org10.115520221622829
trypsin	peptides	J. Pharm. Anal., 2022, 12, 852
C18, C18 FE, Ph	urea	Front, Physiol. 2022, 24, 13
C18	iNOS	Phytochem Lett 2022 49 131
C18	proteins and popyolatile salt	Free Radic Biol Med 2022 187 29
C18	serum	Free Radic Biol. Med. 2022, 187, 23.
C18	serum	Free Padic, Biol. Med. 2022, 184, 196
C18	seruin	Int Dial Sci 2022; 12, 1705
C10	loof	life 2022 12 115
C18	iedi	Lile, 2022, 12, 115.
C18	serum tumor derived evecomes	Front. Immunol., 2022, 12, 13.
-	tumor-derived exosomes	Front. Bioeng. Biotechnol., 2022, 06 September.
C18	vancomycin ,cerebrospinai fluid	Biol. Pharm. Bull., 2022, 45, 1398.
C18	proteins of mhsecs in urea	Arch. Ioxicol., 2022, 96, 2003.
C18	decellularized liver tissue	Cells, 2022, 11, 1258.
TiO,C18	nucleotide,trypsin	iScience, 2022, 25, 104889.
C18	proteins	Acta Biochim. Biophys. Sin, 2022, 54, 1453.
C18-AX	lipidomics	he FASEB Journal, 2022, 36, 12.
C18	peptides	Trans. Vision Sci. Tech., 2022, 11, 7.
Phospholipid	leaves and shoot tissues	J. Experimen. Botany, 2022, 73, 3044
C18	peptides	Adv. Anim. Vet. Sci., 2022, 10, 1775.
Phospholipid	pirarubicin	Front. Pharmacol., 2022, 3, 18.
ProG	serum thyroglobulin	Europ. Thyroid Jouenal, 11:1,e210041
C18	peptides	Front. Med., 2022, 03 May.
PBA	catecholamines in urine	Nutrients, 2022, 14, 905.
-	-	Environ. Sci. Pollut. Res., 2022, 29, 9011
-	polypeptides	Ecotoxicol. Environ. Saf., 2022, 243, 113983.
C18	protein	FEBS Open Bio, 2022, 12, 1206.
РВА	l-dopa and da	PLoS ONE, 17(8): e0271697
C18	protein γ-8	Zool Res., 2022, 43, 851.
C18	sorafenib and lenvatinib	Int. J. Cancer, 2022, 150, 1640.
C18	metabolite extraction and metabolome	Biosci. Biotech. Biochem., 2022, 86, 502.
C18	metabolite extraction and metabolome	Sci. Rep., 2022, 12, 4319.
AX-C18	fatty acid metabolites	Med. Mass Spect. "Lipidomics"" Vol. 6 No. 2
C18	oral and perioral soft tissue	Int. J. Mol. Sci., 2022, 23, 2987.
C18	nroteins	Plants 2022 11 1508
C18	nentides	lextracell Vesicles 2022 11 e12205
C18	nentides	Plants 2022 11 1508
C18	peptides	Nat Commun 2022 13 1369
C18	peptides	ASM Microbiol Sport 2022 10 5
C18	peptides	Asim J. Microbiol. Spect., 2022, 10, 5.
C18	ovtracollular vosiclos	Scientife Penerts 2022, 12, 12220
C18		Scientific Reports, 2022, 12, 15550.
C18	disested population	IIII. J. Mol. Sci., 2022, 25, 7415.
C18	digested peptides	Front. Immunol., 13 October 2022 Sec.
C18	tryptic peptides	Plants, 2022, 11, 910.
C18	acidined peptides	Nature, 2022, 606, 188
C18	peptides	Nat. Commun., 2022, 13, 4652.
C18	protein algests	Scientific Reports, 2022, 12, 4182.
C18	digested peptides	Cell Death and Disease. 2022, 13, 466.
C18	digested peptides	Nat. Commun., 2022, 13, 1548.
C18	peptides	npj Regen. Med., 2022, 7, 18.
C18	peptides	Molecules, 2022, 27(21), 7652.
C18	digested tryptic peptide	Science, 2022, 378, 370.
C18	peptides	npj Sci. Food, 2022, 6, 27.
C18	peptides	Cell Reports, 2022, 47, 7.
C18	peptides	Front. Cell. Infect. Microbiol., 2022, 27 September.
PBA	urine	TrAC Trend. Anal. Chem., 2022, 157, 116786.
C18	digested peptides	Antioxid. Redox Signal.,2022, 00
C18	peptides	Nat. Plants, 2022, 8, 1245.
C18	peptides	Nat. Commun., 2022, 13, 2928.
	doxil, an anticancer nanomedicine, and exosomes, as typical	L Chromotogr A 2022 1664 462002
INTZ, SAX	nanoparticles	J. Chromatogr. A, 2022, 1004, 402802.
C18	phosphopeptides	Nature Commun., 2022, 13, 5715.
C18	peptides	Cell Stem Cell, 2022, 29, 1703.

MonoSpin	Target	Articles
-	safrole, myristicin, and elemicin) of nutmeg in human serum	J. Pharm. Biomed. Anal., 2023, 234, 115565.
TiO	o-phosphoethanolamine (PEA)	Chem. Pharm. Bull., 2023, 71, 10.
Phospholipid	protein in serum	Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Thandar Oo.pdf
Amide	glycans	Ana. Chim. Acta, 2023, 1264, 341269.
Ph	urine Vancomvcin	AAPS Open, 2023, 9, number: 2
C18-CX	peptides	J. Clini, Endo, & Metabo, Dgad315.
CBA	derivatized polycarboxylic acids	
Phospholinid	Diazinon 2-isopropyl-6-methyl-4-pyrimidinol (IMP)	Toxics 2023 11 361
Thespheripid	phosphopontido	Anal Cham 2022 05 10702
C10	phosphopeptide	Anal. Chem. 2023, 33, 10703.
C18	peptides	dol: https://doi.org/10.1101/2023.05.25.542030
C18	Plasma Lipids	Metabolites, 2023, 13, 558.
C18	peptides	doi: 10.1038/s41522-023-00373-9.
C18	Peptides	Front. Nutr., 2023, 10, 1139836.
C18	peptides	Biochem. Biophys. Res. Comm., 2023, 640, 97.
NH2	glycans	Anal. Sci., 2023, 39, 1041.
SCX	succinylated peptides	Analyst, 2023, 148, 95.
C18	peptide	Front. Microbiol., 2023, 13, 2022.
C18	peptides	Phytomedicine, 2023, 114, 154796.
C-18-AX	Lipids	Biochim. Biophys. Acta, 2023, 1868, 159275.
C18	peptide	Digestive properties of β -CN and α -La in different milk 2 protein ingredients
C18	protein	"Aspartyl protease in the secretome of honey bee trypanosomatid parasite is 2 essential for the efficient infection of host "
NH2	N-Glycan Release from Serum Proteins	Int. J. Mol. Sci., 2023, 24, 6203.
-	Peptide	DOI: 10.21203/rs.3.rs-1673468/v1
amide	Human plasma	Biomolecules, 2023, 13, 296.
C18	peptides	doi: 10.3389/fphar.2023.1160665.
C-18-AX	LTB4, LTC/D/E4	Biomed. Pharm., 2023, 162, 114592.
phospholipid	steroid hormones	J. Vet. Med. Sci., 2023, 85, 497.
PBA	urine	https://dx.doi.org/10.2139/ssrn.4369429
C18	polypeptides	Food Sci. Hum. Well., 2023, 12, 1192.
C18	Highly hydrophobic compunds in potao tuber	Food Safety, 2023, 11, 1.
-	peptides	Colloids Surf. A Physicochem. Eng. Asp., 2023, 658, 130743.
-	peptide	Materials & Design, 2023, 230, 111960.
C18	peptide	Cancer. Res. Commun 2023. 3. 202.
C18	peptides	Scientific Reports, 2023, 13, 8802.
C18-AX	lipids	Scientific Reports, 2023, 13, 8903.
C18	peptide	Egypt, J. Chem., 2023, 66, 335.
C18	digested pentides	Peerl 11:e15075
C18	digested pentides	Cancer Res. 2023 83, 1264
nhosnholinid	methanyrilene in nlasma	L Toxicol Sci 2023 48 1
C18	toxin in Cultured Strains	Toyins 2023 15 318
NH2	Galactinol	Plants 2023, 13, 510.
C19	nontido	Data in Brief 2022 49 100026
C18	peptide	Data in Diei, 2023, 46, 105050.
C10	Poptide	DOI: 10.21202/rc.2 rc.2910279/r1
C18	nentide	Call Death & Dicease 2022 1/ 15
C18	peptide	Let L Mal Cei 2022 24 5102
C10	protein nom moso pampoo seediings	https://dv.doi.org/10.2120/scrp.4222105
C10	Pepulues	https://ux.uui.utg/10.2133/5511.4532105
	Digested peptides	Nat. Commun. 2023, 14, 729.
C18	peptides	Nat. Commun., 2023, 14, 2050.
010	peptides	
C18	peptides	nttps://doi.org/10.1101/2023.02.04.52/154
C18	Digested peptides	Adv. Sci., 2023, 2206540.
C18	Digested peptides	Open Biol., 13, 220220.
C18	peptides	DOI:10.1038/s41522-023-00373-9
C18	peptides	Nat. Commun., 2023, 14, 3893.
C18	peptides	Sci. China Life Sci., 2023, 14, 1.
C18	urine	TrAC Trends Anal. Chem., 2023, 164, 117065.
C18	serum, urine	Molecules, 2023, 28, 684.

Order Information

MonoSpin type S

Description	Qty.	Cat.No.
ManaChin C19	50	5010-21700
	100	5010-21701
	50	5010-21670
	100	5010-21671
ManaSpin Dh	50	5010-21733
	100	5010-21734
ManaSpin C19 AV	50	5010-21735
	100	5010-21736
ManaChin C18 CV	50	5010-21731
	100	5010-21732
ManaSpin SAV	50	5010-21720
	100	5010-21721
ManaShin SCV	50	5010-21725
	100	5010-21726
ManaSpin NH2	50	5010-21710
	100	5010-21711
ManaSpin CPA	50	5010-21729
	100	5010-21730
ManaSpin Amida	50	5010-21727
	100	5010-21728
ManaSpin DBA	50	5010-21715
	100	5010-21716
ManaSain TiO	50	5010-21705
	100	5010-21706
MonoSpin Trypsin HP [KEEP COOL]	30	7510-11302
	50	5010-21737
	100	5010-21738
ManaSpin Dhashalinid	50	5010-21698
ινιοτοspin Priospholipiα	100	5010-21699

MonoSpin Type S

Recovery tube (1.7 mL)

Liquid waste tube (2 mL)

MonoSpin type S Trial kit

Trial and custom kits are shipped with various columns packaged for initial method development.

Description	Content	Cat.No.
MonoSpin Trial Kit 1	C18, TiO, SCX, SAX 10 each	5010-21740
MonoSpin Trial Kit 2	C18, Amide, CBA, NH2 10 each	5010-21741
MonoSpin Trial Kit 3	SCX, SAX, CBA, NH2 10 each	5010-21742

MonoSpin type L

Description	Qty.	Cat.No.
MonoSpin L C18	30	7510-11320
MonoSpin L SAX	30	7510-11321
MonoSpin L SCX	30	7510-11322
MonoSpin L NH2	30	7510-11323
MonoSpin L CBA	30	7510-11324
MonoSpin L ME	30	7510-11325
MonoSpin L Phospholipid	30	7510-11326

MonoSpin 96 well plate

Description	Qty.	Cat.No.
MonoSpin 96WP C18	1	5010-21900
MonoSpin 96WP NH2	1	5010-21901
MonoSpin 96WP PBA	1	5010-21902
MonoSpin 96WP SAX	1	5010-21903
MonoSpin 96WP SCX	1	5010-21904
MonoSpin 96WP Amide	1	5010-21905
MonoSpin 96WP CBA	1	5010-21906
MonoSpin 96WP C18-CX	1	5010-21907
MonoSpin 96WP C18-AX	1	5010-21908

MonoSpin ProA, MonoSpin ProG

Description		Qty.	Cat.No.
MonoSpin ProA column	[KEEP COOL]	10	7510-11310
MonoSpin ProG column	[KEEP COOL]	10	7510-11311
MonoSpin ProA 96 well plate	[KEEP COOL]	1	7510-11312
MonoSpin ProG 96 well plate	[KEEP COOL]	1	7510-11313
MonoSpin L ProA	[KEEP COOL]	4	7510-11314
MonoSpin L ProG	[KEEP COOL]	4	7510-11315
MonoSpin ProA/G buffer kit	[KEEP COOL]	-	7510-11316
MonoSpin ProL	[KEEP COOL]	6	7510-11317

96 Deep Well Plate

96 Deep Well Plate

[Features]

- Plate dimensions conform to SBS standards for the automatic operation of dispensing machines
- V-bottom well geometry reduces sample loss
- Made of polypropylene with outstanding heat, cold, and solvent resistance
- Low adsorption (LB type) suppresses non-specific adsorption of proteins and peptides by super hydrophilic surface treatment

Description	Material	Qty.	Cat.No.
MS Plate	Polypropylene	50	6045-00201
MS Plate Low adsorption (LB type)	Polypropylene (hydrophobic polymer)	15	6045-00203

GL Sciences disclaims any and all responsibility for any injury or damage which may be caused by this data directly or indirectly. We reserve the right to amend this information or data at any time and without any prior announcement. Please note that, in the interests of continuous improvement, models or specifications are subject to change without notice. Please also note that the company name and pr oduct name appearing in this catalog ue are the trademark or registered trademark of each corresponding company. In the descriptions in this catalogue, TM and R marks are not used.

Contact us or your local GL Sciences representative. https://www.glsciences.com/contactus/index.php

Authorized distributor: https://www.glsciences.com/company/distributor.html

© GL Sciences Inc. Published in Japan, 31 May, 2024 SCBR0101E